Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608130

RESUMO

The determination of physiological tolerance ranges of photosynthetic species and of the biochemical mechanisms underneath are fundamental to identify target processes and metabolites that will inspire enhanced plant management and production for the future. In this context, the terrestrial green algae within the genus Prasiola represent ideal models due to their success in harsh environments (polar tundras) and their extraordinary ecological plasticity. Here we focus on the outstanding Prasiola antarctica and compare two natural populations living in very contrasting microenvironments in Antarctica: the dry sandy substrate of a beach and the rocky bed of an ephemeral freshwater stream. Specifically, we assessed their photosynthetic performance at different temperatures, reporting for the first time gnsd values in algae and changes in thylakoid metabolites in response to extreme desiccation. Stream population showed lower α-tocopherol content and thicker cell walls and thus, lower gnsd and photosynthesis. Both populations had high temperatures for optimal photosynthesis (around +20°C) and strong constitutive tolerance to freezing and desiccation. This tolerance seems to be related to the high constitutive levels of xanthophylls and of the cylindrical lipids di- and tri-galactosyldiacylglycerol in thylakoids, very likely related to the effective protection and stability of membranes. Overall, P. antarctica shows a complex battery of constitutive and plastic protective mechanisms that enable it to thrive under harsh conditions and to acclimate to very contrasting microenvironments, respectively. Some of these anatomical and biochemical adaptations may partially limit photosynthesis, but this has a great potential to rise in a context of increasing temperature.

2.
Planta ; 255(3): 62, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35141783

RESUMO

MAIN CONCLUSION: Plastoglobules are ubiquitous under non-stress conditions and their morphology, closely related to their composition, changes differently depending on the specific stress that the plant undergoes. Plastoglobules are lipoprotein structures attached to thylakoid membranes, which participate in chloroplast metabolism and stress responses. Their structure contains a coating lipid monolayer and a hydrophobic core that differ in composition. Their function in chloroplasts has been studied focussing on their composition. However, we currently lack a comprehensive study that quantitatively evaluates the occurrence and morphology of plastoglobules. Following a literature search strategy, we quantified the main morphological attributes of plastoglobules from photosynthetic chloroplasts of more than 1000 TEM images published over the last 53 years, covering more than 100 taxa and 15 stress types. The analysis shows that plastoglobules under non-stress conditions are spherical, with an average diameter of 100-200 nm and cover less than 3% of the chloroplast cross-section area. This percentage rises under almost every type of stress, particularly in senescence. Interestingly, an apparent trade-off between increasing either the number or the diameter of plastoglobules governs this response. Our results show that plastoglobules are ubiquitous in chloroplasts of higher plants under non-stress conditions. Besides, provided the specific molecular composition of the core and coat of plastoglobules, we conclude that specific stress-related variation in plastoglobules attributes may allow inferring precise responses of the chloroplast metabolism.


Assuntos
Cloroplastos , Tilacoides , Cloroplastos/metabolismo , Lipídeos , Fotossíntese , Tilacoides/metabolismo
3.
New Phytol ; 231(4): 1415-1430, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33959976

RESUMO

Desiccation tolerant plants can survive extreme water loss in their vegetative tissues. The fern Anemia caffrorum produces desiccation tolerant (DT) fronds in the dry season and desiccation sensitive (DS) fronds in the wet season, providing a unique opportunity to explore the physiological mechanisms associated with desiccation tolerance. Anemia caffrorum plants with either DT or DS fronds were acclimated in growth chambers. Photosynthesis, frond structure and anatomy, water relations and minimum conductance to water vapour were measured under well-watered conditions. Photosynthesis, hydraulics, frond pigments, antioxidants and abscisic acid contents were monitored under water deficit. A comparison between DT and DS fronds under well-watered conditions showed that the former presented higher leaf mass per area, minimum conductance, tissue elasticity and lower CO2 assimilation. Water deficit resulted in a similar induction of abscisic acid in both frond types, but DT fronds maintained higher stomatal conductance and upregulated more prominently lipophilic antioxidants. The seasonal alternation in production of DT and DS fronds in A. caffrorum represents a mechanism by which carbon gain can be maximized during the rainy season, and a greater investment in protective mechanisms occurs during the hot dry season, enabling the exploitation of episodic water availability.


Assuntos
Anemia , Gleiquênias , Desidratação , Dessecação , Fotossíntese , Folhas de Planta , Água
4.
J Exp Bot ; 72(8): 3168-3184, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617637

RESUMO

While most ferns avoid freezing as they have a tropical distribution or shed their fronds, wintergreen species in temperate and boreoalpine ecosystems have to deal with sub-zero temperatures. Increasing evidence has revealed overlapping mechanisms of desiccation and freezing tolerance in angiosperms, but the physiological mechanisms behind freezing tolerance in ferns are far from clear. We evaluated photochemical and hydraulic parameters in five wintergreen fern species differing in their ability to tolerate desiccation. We assessed frond freezing tolerance, ice nucleation temperature and propagation pattern, and xylem anatomical traits. Dynamics of photochemical performance and xanthophyll cycle were evaluated during freeze-thaw events under controlled conditions and, in selected species, in the field. Only desiccation-tolerant species, which possessed a greater fraction of narrow tracheids (<18 µm) than sensitive species, tolerated freezing. Frond freezing occurred in the field at -3.4 ± 0.9 °C (SD) irrespective of freezing tolerance, freezable water content, or tracheid properties. Even in complete darkness, maximal photochemical efficiency of photosystem II was down-regulated concomitantly with zeaxanthin accumulation in response to freezing. This was reversible upon re-warming only in tolerant species. Our results suggest that adaptation for freezing tolerance is associated with desiccation tolerance through complementary xylem properties (which may prevent risk of irreversible cavitation) and effective photoprotection mechanisms. The latter includes de-epoxidation of xanthophylls in darkness, a process evidenced for the first time directly in the field.


Assuntos
Gleiquênias , Dessecação , Ecossistema , Congelamento , Xantofilas , Xilema
5.
J Phycol ; 56(3): 649-661, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31957017

RESUMO

Members of the cosmopolitan streptophycean genus Klebsormidium live in various habitats, including sand dunes and polar/alpine environments. To survive in these harsh conditions they must possess an array of adaptive physiological and structural mechanisms, for example, to deal with chilling and photochilling stresses. Since these mechanisms have not been studied in detail, the objectives of this study were (i) to determine the physiological and biochemical responses of Klebsormidium cf. flaccidum (K. cf. flaccidum) to chilling (low temperature [LT]) and photochilling (LT in combination with high light [HL]) stresses; and (ii) to understand the cross-link between biochemical parameters and cellular ultrastructural changes. The results indicated that 5°C is a temperature threshold (i.e., at 5°C) but not at higher temperatures, physiological changes were observed (Fv /Fm and ETR decreased and energy-partitioning distribution changed, with an increase in Y[NPQ] under LT and an increase in Y[NO] under HL-LT). Also, pigment contents changed significantly, with increased concentrations of photoprotective pigments such as antheraxanthin, zeaxanthin, and total carotenes. All of these responses occurred under LT and, to a greater extent, under LT-HL, indicating that the two stresses (temperature and light) are additive. The cold treatment applied here induced the formation of spores under both LL and HL. The degree of photoinhibition was higher in spores than in vegetative cells, indicating that spores are less susceptible to photodamage. This study demonstrated a broad acclimation potential in different developmental stages of K. cf. flaccidum, which helps to explain the ecological success of this genus.


Assuntos
Estreptófitas , Temperatura Baixa , Ecossistema , Fotossíntese , Temperatura
6.
Plant J ; 101(4): 979-1000, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31953876

RESUMO

In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water-limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs ), mesophyll conductance (gm ) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin-Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole-plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth.


Assuntos
Fotossíntese/fisiologia , Folhas de Planta/anatomia & histologia , Fenômenos Fisiológicos Vegetais , Plantas/química , Adaptação Biológica , Antioxidantes/metabolismo , Cloroplastos/ultraestrutura , Clima Desértico , Ecossistema , Transporte de Elétrons , Ambientes Extremos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Metabolismo Secundário
7.
Ann Bot ; 124(7): 1211-1226, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31549137

RESUMO

BACKGROUND AND AIMS: Lichens represent a symbiotic relationship between at least one fungal and one photosynthetic partner. The association between the lichen-forming fungus Mastodia tessellata (Verrucariaceae) and different species of Prasiola (Trebouxiophyceae) has an amphipolar distribution and represents a unique case study for the understanding of lichen symbiosis because of the macroalgal nature of the photobiont, the flexibility of the symbiotic interaction and the co-existence of free-living and lichenized forms in the same microenvironment. In this context, we aimed to (1) characterize the photosynthetic performance of co-occurring populations of free-living and lichenized Prasiola and (2) assess the effect of the symbiosis on water relations in Prasiola, including its tolerance of desiccation and its survival and performance under sub-zero temperatures. METHODS: Photochemical responses to irradiance, desiccation and freezing temperature and pressure-volume curves of co-existing free-living and lichenized Prasiola thalli were measured in situ in Livingston Island (Maritime Antarctica). Analyses of photosynthetic pigment, glass transition and ice nucleation temperatures, surface hydrophobicity extent and molecular analyses were conducted in the laboratory. KEY RESULTS: Free-living and lichenized forms of Prasiola were identified as two different species: P. crispa and Prasiola sp., respectively. While lichenization appears to have no effect on the photochemical performance of the alga or its tolerance of desiccation (in the short term), the symbiotic lifestyle involves (1) changes in water relations, (2) a considerable decrease in the net carbon balance and (3) enhanced freezing tolerance. CONCLUSIONS: Our results support improved tolerance of sub-zero temperature as the main benefit of lichenization for the photobiont, but highlight that lichenization represents a delicate equilibrium between a mutualistic and a less reciprocal relationship. In a warmer climate scenario, the spread of the free-living Prasiola to the detriment of the lichen form would be likely, with unknown consequences for Maritime Antarctic ecosystems.


Assuntos
Clorófitas , Líquens , Regiões Antárticas , Ecossistema , Simbiose
8.
Plant Foods Hum Nutr ; 74(1): 99-106, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30610553

RESUMO

The consumption of zeaxanthin (Z) through a vegetable-rich diet is recommended to reduce the progression of age-related macular degeneration. Due to Z's intrinsic dynamic character that results from its participation in the photoprotective xanthophyll cycle involving the carotenoids violaxanthin, antheraxanthin and zeaxanthin (VAZ), post-harvest handling practices and storage usually retain low amounts of this bioactive compound (compared to the rest of phytochemicals that are, in general, more stable). Thus, the aim of this work was to investigate in important consumed leafy vegetables the effects of different storage conditions on carotenoids (mainly Z) including i) packaging under three modified atmospheres (MAs), ii) light refrigerated supermarket storage and iii) dark refrigerated domestic storage. The results showed that an MA with low O2 and high CO2 enhanced the Z content under light. Moreover, both light and dark refrigerated storage showed dynamic and circadian pigment changes that enhanced the total VAZ pool. These results can contribute to generating practical recommendations for industries, supermarkets, and consumers when high Z content is a nutritional target.


Assuntos
Embalagem de Alimentos/métodos , Armazenamento de Alimentos/métodos , Verduras/química , Atmosfera , Carotenoides/análise , Humanos , Valor Nutritivo , Folhas de Planta/química , Refrigeração , Xantofilas/análise , Zeaxantinas/análise
11.
Front Plant Sci ; 8: 1428, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28883825

RESUMO

Carotenoids distribution and function in seeds have been very scarcely studied, notwithstanding their pivotal roles in plants that include photosynthesis and phytohormone synthesis, pigmentation, membrane stabilization and antioxidant activity. Their relationship with tocochromanols, whose critical role in maintaining seed viability has already been evidenced, and with chlorophylls, whose retention in mature seed is thought to have negative effects on storability, remain also unexplored. Here, we aimed at elucidating seed carotenoids relationship with tocochromanols and chlorophylls with regard to phylogenetic and ecological traits and at understanding their changes during germination. The composition and distribution of carotenoids were investigated in seeds of a wide range of wild species across the Fabaceae (the second-most economically important family after the Poaceae). Photosynthetic pigments and tocochromanols were analyzed by HPLC in mature dry seeds of 50 species representative of 5 subfamilies within the Fabaceae (including taxa that represent all continents, biomes and life forms within the family) and at key timepoints during seedling establishment in three species representative of distinct clades. Total-carotenoids content positively correlated with tocopherols in the basal subfamilies Detarioideae, Cercidoideae, and Dialioideae, and with chlorophylls in the Papilionoideae. Papilionoideae lacked tocotrienols and had the highest total-carotenoids, chlorophyll and γ-tocopherol contents. Interestingly, lutein epoxide was present in 72% of the species including several herbs from different subfamilies. Overall, species original from temperate biomes presented higher carotenoids and lower tocochromanols levels than those from tropical biomes. Also shrub species showed higher carotenoids content than herbs and trees. During germination, total content of photosynthetic pigments increased in parallel to changes in relative abundance of carotenoids: zeaxanthin and anteraxanthin decreased and ß-carotene augmented. Notably, the highest contents of nutritionally valuable carotenoids were found in Papilionoideae subfamily to which all pulses of socio-economic importance belong. The major differences in carotenoids and tocochromanols composition across the Fabaceae are apparently related to phylogeny in conjunction with ecological traits such as biome and growth form.

12.
Front Plant Sci ; 8: 1144, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28725228

RESUMO

Lichens and free-living terrestrial algae are widespread across many habitats and develop successfully in ecosystems where a cold winter limits survival. With the goal of comparing photoprotective responses in free-living and lichenized algae, the physiological responses to chilling and photochilling conditions were studied in three lichens and their isolated algal photobionts together as well as in a fourth free-living algal species. We specifically addressed the following questions: (i) Are there general patterns of acclimation in green algae under chilling and photochilling stresses? (ii) Do free-living algae exhibit a similar pattern of responses as their lichenized counterparts? (iii) Are these responses influenced by the selection pressure of environmental conditions or by the phylogenetic position of each species? To answer these questions, photosynthetic fluorescence measurements as well as pigment and low molecular weight carbohydrate pool analyses were performed under controlled laboratory conditions. In general, photochemical efficiency in all free-living algae decreased with increasing duration of the stress, while the majority of lichens maintained an unchanged photochemical activity. Nevertheless, these patterns cannot be generalized because the alga Trebouxia arboricola and the lichen Ramalina pollinaria (associated with Trebouxia photobionts) both showed a similar decrease in photochemical efficiency. In contrast, in the couple Elliptochloris bilobata-Baeomyces rufus, only the algal partner exhibited a broad physiological performance under stress. This study also highlights the importance of the xanthophyll cycle in response to the studied lichens and algae to photochilling stress, while the accumulation of sugars was not related to cold acclimation, except in the alga E. bilobata. The differences in response patterns detected among species can be mainly explained by their geographic origin, although the phylogenetic position should also be considered, especially in some species.

13.
Front Plant Sci ; 8: 1051, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674548

RESUMO

Despite being a small geographic extension, Mediterranean Basin is characterized by an exceptional plant biodiversity. Adaptive responses of this biocoenosis are delineated by an unusual temporal dissociation along the year between optimal temperature for growth and water availability. This fact generates the combination of two environmental stress factors: a period of summer drought, variable in length and intensity, and the occurrence of mild to cold winters. Both abiotic factors, trigger the generation of (photo)oxidative stress and plants orchestrate an arsenal of structural, physiological, biochemical, and molecular mechanisms to withstand such environmental injuries. In the last two decades an important effort has been made to characterize the adaptive morphological and ecophysiological traits behind plant survival strategies with an eye to predict how they will respond to future climatic changes. In the present work, we have compiled data from 89 studies following a meta-analytical approach with the aim of assessing the composition and plasticity of photosynthetic pigments and low-molecular-weight antioxidants (tocopherols, glutathione, and ascorbic acid) of wild Mediterranean plant species. The influence of internal plant and leaf factors on such composition together with the stress responsiveness, were also analyzed. This approach enabled to obtain data from 73 species of the Mediterranean flora, with the genus Quercus being the most frequently studied. Main highlights of present analysis are: (i) sort of photoprotective mechanisms do not differ between Mediterranean plants and other floras but they show higher plasticity indexes; (ii) α-tocopherol among the antioxidants and violaxanthin-cycle pigments show the highest responsiveness to environmental factors; (iii) both winter and drought stresses induce overnight retention of de-epoxidised violaxanthin-cycle pigments; (iv) this retention correlates with depressions of Fv/Fm; and (v) contrary to what could be expected, mature leaves showed higher accumulation of hydrophilic antioxidants than young leaves, and sclerophyllous leaves higher biochemical photoprotective demand than membranous leaves. In a global climatic change scenario, the plasticity of their photoprotective mechanisms will likely benefit Mediterranean species against oceanic ones. Nevertheless, deep research of ecoregions other than the Mediterranean Basin will be needed to fully understand photoprotection strategies of this extremely biodiverse floristic biome: the Mediterranean ecosystem.

14.
AoB Plants ; 72015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26002745

RESUMO

Plant growth at extremely high elevations is constrained by high daily thermal amplitude, strong solar radiation and water scarcity. These conditions are particularly harsh in the tropics, where the highest elevation treelines occur. In this environment, the maintenance of a positive carbon balance involves protecting the photosynthetic apparatus and taking advantage of any climatically favourable periods. To characterize photoprotective mechanisms at such high elevations, and particularly to address the question of whether these mechanisms are the same as those previously described in woody plants along extratropical treelines, we have studied photosynthetic responses in Polylepis tarapacana Philippi in the central Andes (18°S) along an elevational gradient from 4300 to 4900 m. For comparative purposes, this gradient has been complemented with a lower elevation site (3700 m) where another Polylepis species (P. rugulosa Bitter) occurs. During the daily cycle, two periods of photosynthetic activity were observed: one during the morning when, despite low temperatures, assimilation was high; and the second starting at noon when the stomata closed because of a rise in the vapour pressure deficit and thermal dissipation is prevalent over photosynthesis. From dawn to noon there was a decrease in the content of antenna pigments (chlorophyll b and neoxanthin), together with an increase in the content of xanthophyll cycle carotenoids. These results could be caused by a reduction in the antenna size along with an increase in photoprotection. Additionally, photoprotection was enhanced by a partial overnight retention of de-epoxized xanthophylls. The unique combination of all of these mechanisms made possible the efficient use of the favourable conditions during the morning while still providing enough protection for the rest of the day. This strategy differs completely from that of extratropical mountain trees, which uncouple light-harvesting and energy-use during long periods of unfavourable, winter conditions.

16.
Funct Plant Biol ; 42(2): 219-228, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480667

RESUMO

Shrubs often form the understorey in Mediterranean oak woodlands. These shrubs are exposed to recurrent water deficits, but how they will respond to predicted future exacerbation of drought is not yet understood. The ecophysiology of the shrub Cistus salvifolius L. was studied over the summer of 2005, which was during a heat-wave superimposed on the most severe drought in the Iberian Peninsula in the last 140 years. Branch water potential fell drastically during the summer, accompanied by stomatal closure and downregulation of PSII, with a concomitant loss of chlorophyll in the leaves. A parallel increase in the ratio of light-dissipating to light-capturing pigments and the proportion of xanthophyll cycle pigments in the de-epoxidated state, along with alterations in the structure of the light harvesting complex, may have reduced the potential for damage to leaves. Substantial increases in leaf tocopherol content during high radiation may have reduced damage from free radicals. Following autumn rains, leaves of the same shrubs showed physiological recovery, indicating the resilience of this Mediterranean species, for which an extremely dry hydrological year with 45% less rainfall than average, did not prevent healthy leaf functioning in response to renewed soil moisture availability.

17.
Tree Physiol ; 34(12): 1305-20, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25398632

RESUMO

Eucryphia cordifolia Cav. is a long-lived evergreen tree species, commonly found as a canopy emergent tree in the Chilean temperate rain forest. This species displays successive leaf cohorts throughout the entire growing season. Thus, full leaf expansion occurs under different environmental conditions during growing such as air temperature, vapor pressure deficit and the progress of moderate water stress (WS). These climate variations can be reflected as differences in anatomical and physiological characteristics among leaf cohorts. Thus, we investigated the potential adaptive role of different co-existing leaf cohorts in seedlings grown under shade, drought stress or a combination of the two. Photosynthetic and anatomical traits were measured in the first displayed leaf cohort and in a subsequent leaf cohort generated during the mid-season. Although most anatomical and photosynthetic pigments did not vary between cohorts, photosynthetic acclimation did occur in the leaf cohort and was mainly driven by biochemical processes such as leaf nitrogen content, Rubisco carboxylation capacity and maximal Photosystem II electron transport rather than CO2 diffusion conductance. Cohort acclimation could be relevant in the context of climate change, as this temperate rainforest will likely face some degree of summer WS even under low light conditions. We suggest that the acclimation of the photosynthetic capacity among current leaf cohorts represents a well-tuned mechanism helping E. cordifolia seedlings to face a single stress like shade or drought stress, but is insufficient to cope with simultaneous stresses.


Assuntos
Aclimatação , Clima , Secas , Luz , Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Água , Chile , Mudança Climática , Escuridão , Magnoliopsida/crescimento & desenvolvimento , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Estresse Fisiológico , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
18.
Appl Microbiol Biotechnol ; 97(7): 3119-28, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23108529

RESUMO

Previous studies demonstrated that arbuscular mycorrhizal fungi (AMF) can induce the accumulation of carotenoids, phenolics, anthocyanins and some mineral nutrients in leaves of lettuce (Lactuca sativa L.) thus enhancing its nutritional quality. Our objectives were to know which carotenoids were the most accumulated in leaves of mycorrhizal lettuces and to assess the effect of AMF on tocopherols' levels in leaves of lettuce plants. AMF always enhanced growth and, in most cases, increased the levels of all major carotenoids, chlorophylls and tocopherols in green and red leaf lettuces. Since these molecules are also important nutraceuticals, mycorrhization emerges as reliable technique to enhance the nutritional value of edible vegetables. These results are compared with other methods developed to improve nutritional quality.


Assuntos
Carotenoides/análise , Clorofila/análise , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Tocoferóis/análise , /química , Folhas de Planta/química
19.
Tree Physiol ; 31(10): 1128-41, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21990025

RESUMO

Nothofagus nitida (Phil.) Krasser (Nothofagaceae) regenerates under the canopy in microsites protected from high light. Nonetheless, it is common to find older saplings in clear areas and adults as emergent trees of the Chilean evergreen forest. We hypothesized that this shade to sun transition in N. nitida is supported by an increase in photochemical and non-photochemical energy dissipation capacities of both photosystems in parallel with the increase in plant size and light availability. To dissect the relative contribution of light environment and plant developmental stage to these physiological responses, the photosynthetic performance of both photosystems was studied from the morpho-anatomical to the biochemical level in current-year leaves of N. nitida plants of different heights (ranging from 0.1 to 7 m) growing under contrasting light environments (integrated quantum flux (IQF) 5-40 mol m(-2). Tree height (TH) and light environment (IQF) independently increased the saturated electron transport rates of both photosystems, as well as leaf and palisade thickness, but non-photochemical energy flux, photoinhibition susceptibility, state transition capacity, and the contents of D1 and PsbS proteins were not affected by IQF and TH. Spongy mesophyll thickness and palisade cell diameter decreased with IQF and TH. A(max), light compensation and saturation points, Rubisco and nitrogen content (area basis) only increased with light environment (IQF), whereas dark respiration (R(d)) decreased slightly and relative chlorophyll content was higher in taller trees. Overall, the independent effects of more illuminated environment and tree height mainly increased the photochemical instead of the non-photochemical energy flux. Regardless of the photochemical increase with TH, carbon assimilation only significantly improved with higher IQF. Therefore it seems that mainly acclimation to the light environment supports the phenotypic transition of N. nitida from shade to sun.


Assuntos
Magnoliopsida/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Luz Solar , Árvores/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Ecossistema , Magnoliopsida/anatomia & histologia , Nitrogênio/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Árvores/anatomia & histologia , Clima Tropical
20.
Physiol Plant ; 140(1): 69-78, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20487377

RESUMO

Leaves are the main photosynthetically active tissues in most plants. However, stems and fruits are also important for the overall carbon balance of the plant because of their contribution to fixation of the CO(2) released by respiration. Photosynthesis could not be possible without a complete set of photoprotection mechanisms, which include the ubiquitous violaxanthin (V) cycle and the taxonomically restricted lutein epoxide (Lx) cycle. In this work, we characterise carotenoid stoichiometry in photosynthetic stems and fruits of avocado in comparison with that of leaves and specifically whether Lx is present in these tissues and also whether it is involved in a light-driven cycle. Avocado was selected as model species to study whether both cycles were functional in non-foliar photosynthetic structures (stems and fruits). An unusual pigment composition was observed in avocado fruit, with a high content of cis-V and cis-Lx, suggesting a different photosynthetic function. In stems, both xanthophylls de-epoxidated upon illumination, but only V recovered in the dark, indicating the existence of a possible 'truncated' Lx cycle. Lx in fruits was de-epoxidated only when its pool was higher than a threshold of 30 mmol mol(-1) chlorophyll, indicating a high non-photoconvertible pool of Lx. We conclude that, at least in stems, the dynamic regulation of photosynthetic activity could also depend on the Lx cycle.


Assuntos
Luteína/metabolismo , Persea/metabolismo , Fotossíntese , Clorofila/análise , Frutas/metabolismo , Luz , Persea/efeitos da radiação , Caules de Planta/metabolismo , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...